
METHODOLOGY Open Access

Rapid-cycle systems modeling to support
evidence-informed decision-making during
system-wide implementation
R. Christopher Sheldrick1* , Gracelyn Cruden2, Ana J. Schaefer3 and Thomas I. Mackie3

Abstract

Background: To “model and simulate change” is an accepted strategy to support implementation at scale. Much
like a power analysis can inform decisions about study design, simulation models offer an analytic strategy to
synthesize evidence that informs decisions regarding implementation of evidence-based interventions. However,
simulation modeling is under-utilized in implementation science. To realize the potential of simulation modeling as
an implementation strategy, additional methods are required to assist stakeholders to use models to examine
underlying assumptions, consider alternative strategies, and anticipate downstream consequences of
implementation. To this end, we propose Rapid-cycle Systems Modeling (RCSM)—a form of group modeling
designed to promote engagement with evidence to support implementation. To demonstrate its utility, we provide
an illustrative case study with mid-level administrators developing system-wide interventions that aim to identify
and treat trauma among children entering foster care.

Methods: RCSM is an iterative method that includes three steps per cycle: (1) identify and prioritize stakeholder
questions, (2) develop or refine a simulation model, and (3) engage in dialogue regarding model relevance, insights,
and utility for implementation. For the case study, 31 key informants were engaged in step 1, a prior simulation
model was adapted for step 2, and six member-checking group interviews (n = 16) were conducted for step 3.

Results: Step 1 engaged qualitative methods to identify and prioritize stakeholder questions, specifically identifying
a set of inter-related decisions to promote implementing trauma-informed screening. In step 2, the research team
created a presentation to communicate key findings from the simulation model that addressed decisions about
programmatic reach, optimal screening thresholds to balance demand for treatment with supply, capacity to start-
up and sustain screening, and availability of downstream capacity to provide treatment for those with indicated
need. In step 3, member-checking group interviews with stakeholders documented the relevance of the model
results to implementation decisions, insight regarding opportunities to improve system performance, and potential
to inform conversations regarding anticipated implications of implementation choices.

Conclusions: By embedding simulation modeling in a process of stakeholder engagement, RCSM offers guidance
to realize the potential of modeling not only as an analytic strategy, but also as an implementation strategy.

Keywords: Computer simulation, Epistemology, Implementation science, Evidence-based practice, Psychological
trauma, Screening
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Contributions to the literature

� Simulation modeling is accepted as an analytic strategy in

implementation science.

� To realize the potential of simulation modeling as an

implementation strategy, we propose Rapid-cycle Systems

Modeling (RCSM).

� RCSM helps stakeholders leverage evidence to inform

decisions by participating in dialogue about and simulation

modeling of the implementation process.

� RCSM can help decision-makers leverage existing evidence

to anticipate downstream unintended consequences, iden-

tify opportunities to improve system performance, and plan

appropriate evaluation strategies.

Background
The success of both system-wide innovations and
evidence-based practices depends on implementation
strategies that effectively promote adoption, sustainment,
and dissemination at scale [1–3]. As articulated in the
Expert Recommendations for Implementing Change
(ERIC), one promising strategy is to “model and simulate
change” (p. 6). Given the rapid growth of simulation
modeling in the health sciences [4–6], there are increas-
ing calls for greater use in implementation science to
promote evidence-informed decision-making [7, 8].
However, at its core, simulation modeling is a quantita-
tive method widely used as an analytic strategy. To fa-
cilitate its use as an implementation strategy, the current
paper presents a method referred to as Rapid-cycle Sys-
tems Modeling (RCSM)—a three-step, cyclical method
designed to realize the benefits of simulation modeling
for implementation science. Specifically, we describe the
evidence and theory underlying the two major compo-
nents of RCSM: (1) the simulation model, itself, and (2)
the process of stakeholder engagement necessary to
realize its full potential as an implementation strategy.
We then present a case study to demonstrate the utility
of RCSM for implementation.

Simulation modeling to promote evidence-informed
decision-making
Despite rapid growth in some fields, simulation model-
ing remains under-utilized, especially in implementation
science [4–6]. One clear barrier is the lack of familiarity
with simulation modeling among core constituencies. As
one paper noted [9], “clinicians and scientists working in
public health are somewhat befuddled by this method-
ology that at times appears to be radically different from
analytic methods, such as statistical modeling, to which
the researchers are accustomed,” (p. 123S). Simulation

modeling represents a way of thinking that differs from
the inductive logic underlying most empirical methods.
Rather than beginning with observed data and then gen-
erating inferences, simulation modeling typically involves
“reasoning to the best explanation,” a form of logic
known as abduction that was first described by the prag-
matic philosopher, Charles Sanders Peirce, and is com-
mon throughout all branches of science [10, 11].
Notably, one form of simulation modeling is already

widely accepted by health researchers: power analysis. By
definition, research studies are intended to investigate
areas of scientific uncertainty, yet this uncertainty cre-
ates challenges for developing a priori study designs.
Prior to clinical trials, for example, researchers gather
evidence to inform assumptions regarding expected
treatment effect, consider their risk preferences regard-
ing type 1 and type 2 errors, and apply statistical expert-
ise to estimate an optimal sample size. Often,
researchers consider a range of plausible effect sizes that
are consistent with available evidence and risk prefer-
ences (e.g., 90 or 80% power). Ultimately, researchers
settle on the power calculation deemed most appropriate
and use it to justify and inform decisions regarding sam-
ple size.
In similar ways, simulation models of many kinds can

support evidence-informed decision-making for imple-
mentation of system-wide innovations. Indeed, we argue
that implementation scientists should not expect a
system-wide innovation to realize a net benefit within a
given context without first ensuring that the assump-
tions of their implementation design are consistent with
prior evidence and that potential risks are acceptable.
Such judgments can be meaningfully informed by simu-
lation modeling. Furthermore, simulation modeling can
inform the implementation process by broadening con-
sideration of candidate implementation strategies (e.g.,
by linking to fields such as operations research), deepen-
ing the search for implementation barriers and facilita-
tors (e.g., by considering dynamic complexity and policy
resistance), and facilitating outcome evaluations (e.g., by
identifying full cascades of potential effects—both
intended and unintended).

Simulation modeling as an analytic strategy
Simulation modeling offers a flexible approach to syn-
thesizing research evidence and applying it to a range of
decisions necessary for system-wide innovations. To cite
one example, a recent systematic literature review was
conducted to inform a state-level effort to implement
screening for adverse childhood experiences (ACEs) in
pediatric settings [12]. Whereas meta-analysis synthe-
sizes evidence across multiple studies to estimate a sin-
gle parameter (e.g., prevalence or screening sensitivity),
simulation modeling offers the flexibility to synthesize
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disparate forms of evidence while considering distal out-
comes. In this case, the authors analyzed potential impli-
cations of screening implementation by applying
available research evidence to a simple simulation model
of the clinical pathway from detection to intervention.
Results demonstrated that extant evidence is consistent
with a wide range of scenarios in which implementation
of ACEs screening induces anything from modest de-
creases in demand for services to very large increases.
While available evidence was found to be insufficient to
support precise predictions, results highlighted the im-
portance of monitoring demand and attending to work-
force capacity, as well as the potential of leveraging
existing datasets to address evidence gaps in operations
outcomes following screening implementation.
The process of simulating possible implementation

scenarios holds an additional benefit: simulation often
promotes insight. While seldom defined or operational-
ized, modelers often use the term “insight” to refer to
lessons learned regarding the causal determinants of a
given problem [13–15], the net value of and/or tradeoffs
inherent in potential solutions [15–17], unrecognized
evidence gaps [15], unexpected results [16], or sensitivity
to the metrics used to measure outcomes [16]. Notably,
in none of these instances does “insight” refer to a pre-
cise estimate or a statement of truth, as is the typical
goal of inductive and deductive logic, respectively. In-
stead, all provide examples of learnings that support
abductive logic, often through careful examination of
underlying assumptions.
Concretely, the act of simply writing out all the param-

eters required to specify even a simple simulation model
begins to make explicit the assumptions that underlie
expectations. For example, simulating the number of pa-
tients who will require treatment after implementing a
screening program minimally requires estimates of
underlying prevalence, screening tool accuracy (e.g., sen-
sitivity and specificity), and the probability that referrals
will be offered and completed. Identifying underlying as-
sumptions can thus reveal important evidence gaps,
highlighting the minimal amount of evidence required to
understand a system. In the words of one famous mod-
eler [18], “uncertainty seeps in through every pore” (p.
828), even for seemingly simple problems. In particular,
system-wide innovations generally enjoy an evidence
base that is less robust than for clinical interventions,
which are more often subject to randomized trials and
are more easily standardized [19].
Moreover, consideration of underlying assumptions

can facilitate understandings of alternative strategies that
target different points in a larger system. For example, a
simulation model designed to understand clinical
decision-making for behavioral interventions suggested
multiple strategies for improving early detection

including not only screening, but also audit-and-
feedback to improve error rates and integrated behav-
ioral health services to facilitate referrals and reduce the
perceived cost of false positive results [20].
Equally important, simulation models can reveal impli-

cit assumptions that are inconsistent or contradictory
[21]. For example, one might assume that as long as cap-
acity to provide treatment exceeds demand, waitlists
should not present a problem. However, even the simple
simulation model described above was capable of dem-
onstrating complex interactions between supply and de-
mand, including how waitlists can emerge despite
significant capacity [22]. For example, a missed appoint-
ment can expend an hour of a treatment provider’s time
(if they cannot immediately schedule another patient)
while simultaneously adding to the waitlist (assuming
the patient reschedules). Thus, it may not be enough to
offer more treatment hours: mechanisms to manage
missed appointments might also be considered during
implementation planning. Waitlists are a classic oper-
ational research problem; as Monks [22] argues, simula-
tion modeling forms the foundation of operational
research, which can address logistical problems and
optimize healthcare delivery [22].
At a deeper level, simulation models can help address

foundational assumptions of the statistical models
employed when planning and evaluating system-wide in-
terventions. As Raghavan [23] argues, prevailing concep-
tual models for system-wide interventions are typically
multidimensional and complex, often positing mutual
interactions between variables at different socioeco-
logical levels (e.g., sociopolitical, regulatory and purchas-
ing agency, organizational, interpersonal; 23). Many of
these relationships involve reciprocal causation—i.e.,
when two variables are each a cause of the other.
Whereas most inferential statistics based on the general
linear model fail to address reciprocal causation—in fact,
they assume it does not exist [24–26]—simulation
models address reciprocal causation through the concept
of feedback loops, in which changes in one variable
cause consistent changes in associated variables (reinfor-
cing loops) or mitigate such changes (balancing loops
[27];). System dynamics—a field of simulation modeling
with a strong focus on feedback loops—suggests that we,
as implementation scientists, ignore reciprocal causation
at our peril. Dynamically complex systems marked by re-
ciprocal causation, feedback loops, time delays, and non-
linear effects often exhibit policy resistance—that is, situ-
ations where seemingly obvious solutions do not work
as well as intended, or even make the problem worse
[28]. Examples of systems-level resistance to innovations
are common, such as the historic trend toward larger,
more severe forest fires in response to fire suppression
efforts or the rapid evolution of resistant bacteria in the
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face of widespread use of antibiotics. As Sterman [28]
points out, the consequences of interventions in dynam-
ically complex systems are seldom evident to those who
first implemented them. Simulation modeling offers a
quantitative method to uncover and address the under-
lying assumptions of system-wide interventions, thus fa-
cilitating the identification of potential implementation
barriers (e.g., feedback loops driving adverse outcomes)
early in the planning process. In this way, simulation
modeling can refine “mental models”—human’s internal
understandings of an external system—which are often
both limited and enduring [29]. For example, the ACEs
screening model [12] demonstrates the potential for
treatment capacity to be influenced through balancing
and/or reinforcing feedback loops involving waitlists and
staff burnout—both of which introduce the potential for
dynamic complexity and policy resistance. Simulation
modeling thus offers an opportunity for careful reflec-
tion about the complex dynamics in which many inter-
ventions function as elements of the systems they are
designed to influence [30].

Simulation modeling as an implementation strategy
As an analytic strategy, simulation modeling can help
synthesize a range of available evidence applicable to a
given implementation challenge while making under-
lying assumptions explicit. But analysis is only half the
battle. If assumptions appear solely in the “fine print” of
a model’s computer code, they are unlikely to be under-
stood, interrogated, or challenged by other stakeholders.
Engagement is needed to realize simulation modeling’s
full value. Here, we argue that to be an effective imple-
mentation strategy, simulation modeling is best imple-
mented in the context of cultural exchange—i.e., an in-
depth process of negotiation and compromise between
stakeholders and model developers [31]. In turn, stake-
holder participation can improve the analytic value of
the models themselves. Concretely, making assumptions
explicit through simulation models allows for their re-
finement and critique through dialogue between re-
searchers and stakeholders, including clarification of
their frequently divergent assumptions, sources of evi-
dence, and priorities.
The importance of engagement in the modeling

process has empirical support. Decision-makers have en-
dorsed the “co-production” of simulation models, citing
the insights gained, the desirability of simulating pro-
posed interventions effects prior to implementation, and
the identification of evidence gaps [32]. The process of
negotiation and compromise while co-producing models
has been found to influence decision-makers’ attitudes,
subjective norms, and intentions [33], which help
achieve alignment and promote community action [34,
35]. These findings are consistent with observations in

management science from over 50 years ago [22, 36], as
well as recent research on cultural exchange theory
demonstrating that dialogue, negotiation, and comprom-
ise between scientists and implementers can directly
contribute to implementation success [31].
Consistent with contemporary epistemology, this per-

spective on modeling suggests that application of the sci-
entific method is not sufficient to prevent bias or error
and that findings are imbued with theory and values that
are influenced by social context [37, 38]. As a remedy,
theories of situated knowledge advocate for “critical
interaction among the members of the scientific com-
munity [and] among members of different communities”
[39] as the best way to discern scientific assumptions
and address their potential consequences. Consistent
with this focus, system dynamics is explicitly intended to
help scientists uncover hidden assumptions and biases
[40] based on recognition of the limits of traditional re-
search methodologies as well as the observation that “we
are not only failing to solve the persistent problems we
face but are in fact causing them.” ( [28] , p.501) Recog-
nizing the benefit of uncovering hidden assumptions and
biases in our scientific understandings holds profound
implications, shifting our translational efforts from up-
take of research evidence alone to promoting the bidir-
ectional exchange of evidence, expertise, and values [41].
To facilitate cultural exchange of this kind, RCSM em-

phasizes dialogue among all relevant stakeholders (e.g.,
decision-makers, model developers, researchers). Dia-
logue theory describes different forms of relevant inter-
actions [42]. For example, shared inquiry is initially
necessary to gain a mutual understanding of available
evidence and relevant priorities. As stakeholders develop
opinions about possible implementation strategies and
their implications, critical discussions can ensue about
their relative merits, using the simulation model as an
interrogation guide. Finally, when the time and cost of
further critical discussions outweigh their benefits, a
simulation model can guide deliberations about how im-
plementation should proceed and be monitored and
evaluated. The effectiveness of the simulation model can
thus be assessed by its relevance to implementation deci-
sions, the insight it elicits, and its utility for further
planning.
However, there is not enough concrete guidance on

how to promote engagement with simulation models to
support implementation efforts. To fill this gap, RCSM
uses an approach similar to group model building
(GMB), which is a process of engagement with system
dynamic models and systems thinking that is well-suited
to facilitate use of simulation modeling in implementa-
tion science [43]. Several GMB principles are conceptu-
alized as core attributes of RCSM. Both are
“participatory method[s] for involving communities in
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the process of understanding and changing systems…,” (
[44] , p. 1) both emphasize scientific uncertainty and the
questioning of assumptions, and both focus on collabor-
ation between stakeholders and simulation modelers
across multiple stages, from problem formulation to
generating consensus regarding strategies for interven-
tion [45]. However, use of GMB in implementation sci-
ence has been limited. Building on GMB, RCSM targets
the needs of implementers by focusing on rapid cycles
that can fit within short policy windows. Moreover,
RCSM is not limited to system dynamics, but is open to
any form of simulation modeling that can usefully ad-
dress decision-makers’ questions with transparency. For
example, whereas the screening example described above
involved a Monte-Carlo simulation, other types of
models are also possible, including microsimulation,
agent-based modeling, Markov modeling, and discrete-
event simulation. At its core, RCSM is a pragmatic ap-
proach that is designed to be responsive to decision-
makers’ needs.
For readers interested in greater detail regarding mod-

eling approaches and their applications, we recommend
reviews focusing on management [46] and healthcare
[47, 48]. For those interested in learning to build simula-
tion models, we found Baker’s description of how to de-
velop basic optimization models using Excel [49] to be
invaluable, as is Sterman’s detailed text on system dy-
namics [50].

Case Study: Rapid-cycle Systems Modeling (RCSM) of
trauma-informed screening
To explain RCSM’s rationale and demonstrate its use,
we report an illustrative example of an initial cycle of
RCSM conducted with state-level decision-makers seek-
ing to promote trauma-informed screening programs for
children and adolescents (“youth”) in foster care. In re-
sponse to federal legislation, U.S. states have been work-
ing to implement trauma-informed screening and
evaluation for children in foster care over the past dec-
ade [51, 52]. This case example builds on prior studies
investigating the role of mid-level administrators’ use of
research evidence while enacting statewide innovations
for youth in foster care [3, 52].

Methods
RCSM involves a process of iterative, stakeholder-
engaged design to test the assumptions that underlie
system-wide innovation and implementation. Consistent
with traditions in evidence-based medicine that derive
from decision analysis, RCSM recognizes the need for
the best available scientific evidence, the expertise to ad-
dress scientific uncertainty in the application of that evi-
dence, and stakeholder values to define model scope and
purpose and to weigh tradeoffs between competing

outcomes [53]. To accomplish these goals, each cycle of
simulation modeling in RCSM involves three steps: (1)
identify and prioritize stakeholder questions, (2) develop
or refine a simulation model, and (3) engage in dialogue
regarding model relevance, insights, and utility for im-
plementation. This final step can inform prioritization of
stakeholder questions for future cycles of RCSM.
Below, we describe each of the three steps in the

RCSM cycle. Table 1 provides an overview of how
RCSM is operationalized in this case study.

RCSM Step 1: Identify stakeholders’ questions
Given RCSM’s focus on the needs of decision-makers,
an understanding of the organizational and interpersonal
processes in place for decision-making is critical to de-
termination of the appropriate sampling framework [41].
The first task is to identify the individuals who inform
or make the decisions pertinent to the policy or pro-
grammatic domain of interest. Sample selection criteria
are consistent with key informant interviews, in which
individuals are selected because they are deemed most
knowledgeable about the phenomenon of interest, in this
case decision-making in the domain of interest [54].
Consideration should also be given to the value of tri-
angulating perspectives on a particular policy domain
and attempting to secure a sample sufficient for qualita-
tive standards of sample size (e.g., thematic saturation
[55];).
To identify the questions of relevance to stakeholders,

multiple qualitative approaches in the postpositivist trad-
ition could be engaged, including interviews, surveys, or
observation, so long as they provide sufficient detail to
guide model development, including defining the
models’ purpose, scope, structure, and opportunities for
application. For example, our team relied on “decision
sampling” to analyze the decisions confronted by mid-
level policymakers. Based explicitly on decision analysis
[53], the interview guide included questions on (1) deci-
sion points, (2) choices considered, (3) evidence and ex-
pertise regarding chance and outcomes, (4) outcomes
prioritized, (5) expressed values, (6) tradeoffs considered
in making the final decision, and (7) aspects of the
decision-making process [41], itself. As detailed in a re-
cent publication [41], decision sampling facilitated docu-
mentation of stakeholder questions and priorities,
specifically through identification of specific questions
relevant to actual decisions confronted by policymakers,
which helped to articulate model purpose and scope.

RCSM Step 2: Develop the simulation model
The goal of step 2 is to develop a simple simulation
model that addresses stakeholder questions and to con-
duct preliminary “virtual experiments” relevant to imple-
mentation. In RCSM, model selection is pragmatic,
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Table 1 Rapid-cycle Systems Modeling: illustrative case study

Activity Goal Potential methods Products Illustrative case study

RCSM Step 1:
Identify the
relevant
stakeholder
questions

Identify relevant
stakeholders and the
questions and priorities
involved in the decisions
they confront.

• Interviews
• Focus groups
• Surveys
• Observations

Sampling
framework and
documentation of
stakeholder
questions and
priorities

• Goal: To identify questions and
decisions confronted by mid-level
managers when developing univer-
sal trauma screening and/or assess-
ment protocols for youth entering
foster care.

• Method: Sampling framework sought
key informants who were engaged
in decision-making processes regard-
ing the provision of trauma-
informed services for children in fos-
ter care. Approximately hour-long
semi-structured interviews were con-
ducted by telephone with 31 key in-
formants across 12 states. Key
informants were mid-level adminis-
trators from Medicaid, child welfare,
and mental health agencies with
roles developing policy for the
provision of trauma-informed ser-
vices for children in foster care. The
interview guide was based on a de-
cision sampling framework, with
questions grounded in core domains
of decision analysis. Respondents
were sampled until no new themes
in the core domains emerged (i.e.,
thematic saturation). Trained qualita-
tive researchers (TM, AS, BF, ER) con-
ducted interviews and analysis at
their respective research institute. Re-
search team engaged a modified
framework analysis in DeDooseTM,
consisting of seven steps to identify
and index the specific decisions rele-
vant to the implementation of
trauma-informed screening. The re-
search protocol for the illustrative
case study was reviewed and ap-
proved by the Institutional Review
Board at [withheld to preserve ano-
nymity]. Additional details of the
methodological approach are previ-
ously published [citation with to pre-
serve anonymity].

• Product: Decision set of five decision
points (see Results).

RCSM Step 2:
Develop
Simulation Model

Develop and/or refine a
simple simulation model
to address the questions
identified in Step 1.

• Monte-Carlo model
• Discrete-event model
• System dynamics
• Agent-based model

• Simulation model
• Evidence synthesis

• Goal: Refine a simulation model and
conduct virtual experiments that
address questions relevant to
statewide implementation of
trauma-informed screening

• Method: Adapted a Monte-Carlo
model of a typical screening process
(hereafter, the “baseline model”; see
Fig. 1) from previous research [12].
Virtual experiments focused on the
sensitivity of the overall process for
moving children with trauma to
treatment, the false positive rate, in-
fluence of screening on demand for
services, workforce capacity to pro-
vide treatment, and the potential for
waitlists if demand exceeds supply.
To address stakeholders’ questions
about merits of altering screening
thresholds, sensitivity analyses fo-
cused on an increase in screening
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considering the cost of model development alongside
potential benefits. Clearly, the potential of modeling as
an analytic tool increases with advances in the field, such
as incorporation of Bayesian priors during sensitivity
testing and use of simulation models to support causal

inference [56, 57]. But just as a simple online calculator
can inform the initial stages of a power analysis, simple
simulation models can help inform implementation
planning. Because they are more tractable and transpar-
ent than complex models, simple models may be more

Table 1 Rapid-cycle Systems Modeling: illustrative case study (Continued)

Activity Goal Potential methods Products Illustrative case study

thresholds, which increases specifi-
city but lowers sensitivity.

• Product: Simulation model
synthesized evidence from
systematic reviews; a slide deck and
presentation detailed the Monte-
Carlo model, analytic results, and re-
sults relevant to each question from
step 1.

RCSM Step 3.
Stakeholder
engagement with
iterated
simulation model

• Assess relevance of
model to stakeholder
decisions

• Seek insight into
question

• Discuss utility for
informed decision-
making in support of
implementation

• Identify relevant stakeholders for
iterative model development.

• Validation of qualitative data to
search for disconfirming evidence,
probe underlying assumptions

• Group dialog in service of inquiry
into evidence and its application,
critical discussion of competing
hypotheses, and deliberation
regarding best course of action

• Identification of
alternative
strategies

• Identification of
potential barriers &
mitigation plans

• Articulate
hypotheses
regarding key
causal mechanisms

• Goal: To assess model relevance,
seek insight regarding systemic
factors likely to drive success, and
discuss model utility to support
implementation

• Method: To provide input, we
sampled both intermediaries and a
subset of key informants initially
interviewed in Step 1. Trained
qualitative researchers [TM, AS]
convened four member-checking
group interviews through an online
platform with key informants (n = 8)
of the 31 key informants engaged in
Step 1 semi-structured interviews
and two additional group interviews
with “intermediaries” (n = 8) who de-
veloped, evaluated and/or provided
technical assistance for mental
health screening and trauma-specific
interventions. The study team pre-
sented a standardized slide deck. Re-
spondents were provided findings
and asked questions after each sec-
tion. Following the presentation of
the simulation model, respondents
were asked “Does this model seem
applicable to your delivery system? If
so, how?”, “How, if at all, would you
want to change the model to ac-
commodate your delivery system?”
and “What would be the strengths
or limitations of this model when
applied to your delivery system?”
Each member-checking group inter-
view transcript was analyzed follow-
ing completion. We used an
immersion-crystallization approach in
which two study team members lis-
tened to and read each group inter-
view to identify important concepts
and engaged open coding and
memos to identify themes and dis-
confirming evidence. Additional de-
tails of the methodological approach
are previously published [citation
with to preserve anonymity].

• Product. Summary of utility and
potential modifications to customize
to decision-maker needs.
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easily understood and therefore more likely to influence
how researchers and decision-makers conceptualize
problems [50, 58]. Simple models can also be developed
more rapidly, thereby taking advantage of available pol-
icy windows (not to mention requests for proposals).
Additionally, rapid results facilitate iterations of RCSM,
which can include group decisions about the value of
further model building (versus competing priorities, like
further data collection) as well as adjustments to model
scope and priorities. Although expert modelers might be
engaged to develop more complex simulations, many re-
searchers are capable of developing and applying simple
simulation models early in the planning process, thereby
helping to reveal the assumptions necessary for success-
ful implementation of an innovation in a given system.
Products of this step can include the simulation model
itself, but also a report detailing how the model synthe-
sizes available evidence with respect to stakeholders’
questions (e.g., see evidence synthesis on ACEs screen-
ing cited above [12];).

RCSM Step 3: Stakeholder engagement with iterated
simulation model
After discerning stakeholders’ questions (step 1) and
attempting to formulate a helpful response (step 2), an
important third step is to reconcile the two through dia-
logue. A primary purpose of RCSM is to examine impli-
cit assumptions, including about what messages are
heard or what models might be helpful. Accordingly,
Step 3 prioritizes engagement between the stakeholders,
the research team, and the model itself. Concretely, this
step aims to ensure (1) relevance of the model to stake-
holder needs, (2) potential for analytic insight into
system-level factors that may influence implementation,
and (3) utility to facilitate evidence-informed decision-
making at a group level to advance implementation.
In this step, relevant stakeholders might include a wide

array of individuals who could help to assess the rele-
vance, accuracy, and potential application to the policy
or programmatic innovation of interest. Stakeholders en-
gaged in this step may be more broadly defined than in
Step 1 so as to facilitate the assessment and interpret-
ation of the model developed. Potential stakeholders to
be engaged could align as broadly with the 7Ps frame-
work for stakeholder engagement, including patients and
the public, providers, purchasers, payers, policymakers,
product makers, and principal investigators [59].
Consistent with tenets of data validation in qualitative

research [60], this step prioritizes a search for discon-
firming perspectives on simulation findings to help in-
terrogate assumptions [61]. Products of this step often
include “insight,” such as identification of potential bar-
riers, mitigation plans, and alternative strategies consist-
ent with implementation science frameworks

emphasizing the role of inner and outer contexts. En-
gagement can also help stakeholders to articulate hy-
potheses regarding key causal mechanisms of
intervention and implementation strategies, including
their interaction and dependence on context. For ex-
ample, the evidence synthesis described above articu-
lated how the impact of ACE screening may depend on
variables interacting at multiple levels, including screen-
ing accuracy, workforce capacity, and trust between pa-
tients and their providers [12]. This model could
facilitate extension of hypothesized mechanisms to in-
clude outer context, for example by modeling the poten-
tial impact of state-level policy decisions on workforce
capacity.

Results
RCSM Step 1: Identify stakeholders’ questions
Interviews documented a set of discrete and inter-
related decisions required to promote implementation of
trauma-informed screening. As reported elsewhere [41],
implementation decisions with respect to trauma-
informed screening were classified into five domains:

(1) Reach of the screening program, including which
children to screen and at what ages.

(2) Content of the screening tool, including which
screening tool to use, and whether it should directly
assess traumatic life events, the sequelae of
traumatic life events (e.g., symptoms), or both.

(3) Threshold or “cut-score” for referral, including
whether to adopt a threshold higher than is
recommended in the research literature to avoid
spikes in demand.

(4) Resources for screening start-up and sustainment,
such as whether sufficient resources are available in
local systems to successfully implement screening.

(5) Downstream system capacity to respond, such as
whether sufficient resources are available in local
systems to address downstream needs identified
through screening, for example, need for
intervention.

RCSM Step 2: Develop simulation model
Our team selected a Monte-Carlo model for two primary
reasons: (1) development time and cost was low because
a preliminary model had already been created and many
relevant parameters could be estimated based on extant
data, and (2) relevance to stakeholder questions was
likely given that proof-of-principle had been demon-
strated for similar screening interventions [12], for ex-
ample, by demonstrating the tradeoffs inherent in choice
of screening cut-scores [62, 63]. To facilitate use, we
built our Monte-Carlo model using widely available
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software (Microsoft Excel) that has been used to facili-
tate dissemination of optimization modeling [49].
Specifically, the modeling team adapted a prior simula-

tion model [12], conducted virtual experiments, and cre-
ated a presentation to communicate a description of
model structure and key findings. Respondents had no
prior experience with simulation modeling; therefore,
the presentation was designed to introduce key concepts
and practical applications of the model, as well as poten-
tial insights. Although this paper is not intended to val-
idate a simulation model, we present enough detail to
demonstrate how modeling functioned in the RCSM
process. The baseline model (Fig. 1) depicts discrete
steps of the system of care in which screening is situ-
ated, beginning with the screen itself and then moving
to the referral decision and outcome, culminating in a
treatment queue. A separate model depicts the work-
force available to provide that treatment.
Using this model, the presentation addressed topics

relevant to stakeholder questions:

(1) Downstream system capacity to respond. The
baseline model was specifically designed to guide
discussion about whether system treatment capacity
is sufficient to meet demand resulting from
screening. Lacking the time and data necessary for
accurate, system-specific predictions, we focused on
conceptual issues, such as which variables might

govern demand for treatment after screening imple-
mentation. Therefore, the presentation included
questions about the plausibility of model parameters
for the probability of referral and its completion, in-
cluding whether such parameters were likely to be
equivalent for children with and without trauma.
Notably, these questions touch on scientific debates
about the utility of clinical decision-making subse-
quent to the use of quantitative screening tools
[62–65]. In addition, recent publications highlight
the role of workplace burden on provider burnout
[66]. Therefore, phase 3 member-checking group
interviews inquired about the extent to which wait-
lists might influence (i.e., feedback to) other model
variables governing referral decisions, referral com-
pletion rates, and provider quit rates.

(2) Threshold or “cut-score” for referral. To address
stakeholders’ questions regarding screening
thresholds, sensitivity analyses simulated tradeoffs
from raising screening thresholds. Consistent with
our team’s past research [20, 62], Fig. 2 depicts the
influence of screening thresholds on system
performance (demand for treatment and treatment
capacity; Fig. 2a, d), waitlists (Fig. 2b, e), and
process sensitivity and specificity (Fig. 2c, f). The
top row of panels in Fig. 2 do so under the
assumption that recommended screening thresholds
are implemented, while the bottom row depicts

Fig. 1. Baseline Monte-Carlo model of a screening process. Note. *separate parameters were specified for youth with and without trauma, who
may differ with respect to chance of referral and retention
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results under the assumption that screening tools
are scored using a higher threshold. The model
demonstrates that a higher threshold may result in
shorter waitlists, but fewer children receiving
treatment.

(3) Capacity to start-up and sustain screening.
Simulation revealed that initial assumptions
regarding when the treatment workforce was hired
resulted in a lag in increased system capacity, thus
leading to a risk of waitlists in the first 2 years of
the baseline model. In short, waiting for demand to
increase before hiring new treatment providers
could result in significant waitlists before supply
catches up with demand. This issue was not
anticipated by the research team and was discussed
in the presentation.

(4) Screening program reach. In the model, a single
parameter determines the proportion of the
population that receives screening. The
presentation also emphasized that parameters could
be adapted to reflect different populations; for
example, young children might display different
prevalence of trauma than adolescents and

accordingly be eligible for different services.
Therefore, the presentation included questions
about the utility of adapting the model to address
program reach.

(5) Screening tool content. The presentation noted that
different model parameters may reflect different
operational definitions of trauma. For example, a
screening instrument may be validated using a
structured interview that offers one definition,
whereas clinicians may find benefit in treating
children who are “subthreshold” by formal
diagnostic criteria. In this case, a “false positive” by
one definition may be a “true positive” by another.
Moreover, we noted that developmental and
behavioral problems can be conceptualized not only
as a binary diagnostic classification, but also as a
continuum. Therefore, prevalence can be more than
just a single number and can vary over time and
place [67] and youth’s years of exposure [68, 69].
Thus, the presentation included questions not only
about the plausibility of the model’s prevalence
estimate, but also about the nature of the problem
to be addressed and whether there is likely to be
consensus among all participants in the screening
process.

Fig. 2 Influence of screening threshold on system capacity, demand for treatment, and waitlists. Note. A–E display 20 different runs of the
simulation model, each of which reflects a possible trajectory that is consistent with model assumptions yet differs because of stochastic
elements inherent in the process. Darkened lines represent average values. Note that intervals around system capacity, which depend on a
relatively small number of treatment providers, exceed those around demand, which depend on a comparatively larger number of children
receiving care through the system
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RCSM Step 3: Engage stakeholders
The goal of the third step is to assess model relevance,
potential for insight, and utility to inform implementa-
tion decisions. With respect to relevance, respondents
reported that the model generated an accurate represen-
tation of the decisions confronted and tradeoffs consid-
ered when developing their respective screening
protocols. Illustrative of this theme, one respondent
stated, “Oh yeah, these are kind of typical points of con-
versation, questions, decision-making that we run into.”
Respondents also indicated the availability of data
sources required to parameterize the model within their
respective administrative data systems, suggesting the
feasibility of tailoring simulation models to their specific
systems. Despite general agreement that model parame-
ters were plausible, respondents noted that local data
could facilitate system-specific estimates.
With respect to insight, respondents articulated mul-

tiple ways that the simulation model influenced their
mental models of screening implementation. First, the
model reinforced participants’ inclination to attend to
overall process sensitivity rather than the sensitivity of
the screener alone. The model also promoted consider-
ation of alternative intervention strategies, such as care
coordination or “warm hand-offs,” to improve overall
process sensitivity. As one respondent articulated:

The challenge we see is from referred to completion
because that's where you run into the wait times,
the different providers, the lack of capacity, or the
intervention of someone with a disagreement or
that thinks because a child is stable in care, they
don't need mental health services. Things like that.
So that's an active area that we'll actually be explor-
ing is how to create that automated pathway to
make sure that the referral results in a warm care
coordination handoff to ongoing care. -FG 1

Second, the model provided insight into potential
modifications to the screening process where service
capacity was not adequate. Respondents routinely
reflected on whether thresholds should be adjusted de-
pending on the downstream capacity of delivery systems,
as illustrated in the following quote:

– it does beg the question, should you have differing
screening criteria based on the area? But that is
mostly driven by capacity, to be totally honest. -FG 4

Moreover, model results suggest the time required to
hire treatment providers will result in a time lag for
treatment supply. The implications of this assumption
for waitlists only became clear through the simulation
process. As noted by one participant:

I mean this is the kind of thing that you in hindsight
wish that the people with the good intentions had
had in front of them before they actually put the le-
gislation forward or were able to account for the
consequences that would inevitably come with
major policy changes. Rather than just saying well,
this is the right thing to do so, you know, we're just
going to do it and deal with the consequences, actu-
ally having a … more technical conversation about
the expected implications. -FG 1

In turn, questions were raised that were not antici-
pated by our research team, such as the possibility of
adapting the model to compare performance across
county-level systems rather than only optimizing per-
formance in a single system. In addition, respondents
questioned the model structure by noting that referral
decisions were often clinically informed rather than de-
termined solely by screening instruments—an observa-
tion that was consistent with the research team’s past
research but was not reflected in the simplified model
[65]. These insights would be important to addressing
stakeholder needs in successive iterations of RCSM.
In regard to RCSM’s utility as an implementation

strategy, respondents indicated that the model structure
would facilitate dialogue about implementation, poten-
tially altering “mental models” of key stakeholders, in-
cluding system partners and researchers. Illustrative of
this, one respondent articulated the model’s utility for
building new understandings among system partners:

I wouldn’t say it’s obvious, like if you look across
the different systems that would interface with this,
so again, saying that if this is mental health and you
have wait lists for kids that do qualify that's hugely
problematic but at least we know they have a need
… I think it makes sense in my mind, but I don’t
think that our partners think about it in this way
with the addition of thinking about how it impacts
other system partners and other dynamics of the sys-
tem of care. -FG 1

Policymakers also articulated how RCSM could facili-
tate communication with researchers:

I do know that [screening tool developer], who de-
veloped the tool, feels very strongly that it’s a good
indicator of what needs to happen, and they’d like
to see our thresholds much lower than what they
are for the kind of intervention. So, I think, if any-
thing, it might help the developer in our department
feel better about what we've set as potential thresh-
olds. Whether or not they would welcome that, I
don’t know. -FG 2
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These statements suggest how RCSM could be used to
promote dialogue and achieve cultural exchange both
prior to and during implementation efforts.

Discussion
Results reaffirm the use of simulation modeling as an
implementation strategy. Asking stakeholders about im-
plementation decisions before developing the simulation
model (i.e., the design phase) resulted in a model
decision-makers found relevant to a set of necessary de-
cision points. Decision-makers reported gaining insight
into how system variables can impact the success of uni-
versal screening protocol and how investments in “hand-
offs” and treatment system capacity may complement
screening by improving overall system performance. In
turn, researchers gained further insight into the needs of
decision-makers, such as the possibility of county-level
models to consider targeting resources within a given
state. Both groups reported insight into the importance
of timing hiring to anticipate increases in demand.
The relative simplicity of the model helped to facilitate

this insight. As Hovmand notes [44], “Simply helping
groups recognize that there is a system, the components
that constitute the system, or how the components
might be related through feedback can readily solve
some problems,” (p. 49). In our case study, participants
were able to challenge structural assumptions in the
model, such as the extent to which referrals were deter-
mined by screening (as opposed to attrition at each stage
of the screening process) and the possible influence of
waitlists in influencing supply and demand of treatment
through feedback loops. At a deeper level, the model fa-
cilitated dialogue regarding differences in the meaning
of “trauma”—a concept central to determining eligibility
and tracking progress.
Consistent with cultural exchange theory, the case

study demonstrated the importance of dialogue—both
among implementers and with researchers. The question
of screening thresholds is a case-in-point. Whereas re-
searchers often use receiver operating characteristics
(ROC) curves to balance sensitivity and specificity, one
respondent received affirmation for the view that thresh-
olds are “mostly driven by capacity.” This difference in
perspective mirrors a debate in the research literature
[63, 65], and respondents reported that the model could
be useful for facilitating conversations with researchers
who hold different views.
We note several limitations. While we ground RCSM

in contemporary epistemology, by no means have we
conducted a comprehensive review of this subject.
Moreover, by emphasizing the rapid application of sim-
ple models, RCSM merely scratches the surface of the
potential inherent in more complex simulation models,
such as recent advances that integrate policy-relevant

decision models with system dynamics to directly ad-
dress rapidly changing contexts [70]. We invite com-
ment and critique from philosophers and expert
modelers, particularly those familiar with previous ef-
forts to disseminate system dynamics concepts [58, 71,
72].
In addition, we make no claim that modeling and dia-

logue guarantee insight; at best, they create fertile soil
for insight to germinate. Indeed, the single round of
RCSM in our case study offer proof-of-principle regard-
ing the inquiry stage of dialogue, but additional research
is clearly needed. With regard to process, more advanced
facilitation techniques may be needed to ensure product-
ive critical discussion and deliberation, where the goal is
to reveal truth and determine the best course of action
while avoiding simple debate, where the goal is often to
win regardless of the truth underlying one’s position
[42]. In addition, guidance is needed to inform decisions
regarding the need for additional iterations of RCSM, for
example by articulating potential benefits (e.g., by en-
gaging additional stakeholder or avoiding premature
closure) and costs (e.g., taxing available capacity, or ex-
ceeding “policy windows”). Ultimately, the key questions
are whether engaging (and continuing to engage) in
RCSM meaningfully improves decision-makers’ use of
available evidence, and in turn whether such use im-
proves outcomes valued by key stakeholders.

Conclusions
With limitations in mind, results suggest RCSM’s poten-
tial to extend use of simulation modeling both as an
analytic strategy for evidence synthesis and as an imple-
mentation strategy to promote dialogue regarding
underlying assumptions, shared reasoning to the best ex-
planation for available evidence, and evidence-informed
decision-making regarding optimal courses of action.
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